It's a small encyclopedia for the science and knowledge I post every topic i read for science and knowledge...etc.
الجمعة، 29 مايو 2009
الأربعاء، 27 مايو 2009
الصاروخ
الصاروخ هو جسم طائر يعمل على مبدأ الاندفاع عن طريق رد الفعل لانفجارات تتم في جسم الصاروخ أو في محركه كما هو مبين في الأسفل وهو مبدئ غير مرتبط بمحيط الصاروخ أي أن الصاروخ أو الدفع الصاروخي يعمل أيضا في الفضاء الخالي من الهواء مثلا. وهو يتميز عن القذيفة في أن مرحلة التسارع لدى الصاروخ أطول.
ويختلف حجم الصاروخ من صواريخ الألعاب النارية مرورا بالصواريخ العسكرية إلى الصواريخ العملاقة كصاروخ ساتورن 5 الذي استعمل في استكشاف القمر خلال مشروع أبولو.
نبذة تاريخية
تعود بداية الصواريخ إلى أوائل القرن الثالث عشر الميلادي، حيث استخدمها العرب في صد الصليبيين ونجد أول وصف تفصليل للصواريخ بواسطة العالم العربي حسن الرماح، وفي الحروب الصليبية انتقلت الصواريخ إلى الأوروبيين، الذين ابتكروا بعد ذلك المدافع و البنادق تلك الأسلحة أظهرت دقة أكبر في التصويب، و نتيجة لذلك توارت الصواريخ عن مسرح الحروب لما يزيد عن ثلاثمائة و خمسين سنة.
و مع قيام الحربين العالميتين أظهر الألمان اهتماماً بالصواريخ، فطوروا صواريخ عدة منها صاروخ الﭪي-2 الذي أطلقت ألمانيا منه أكثر من ألف صاروخ على لندن أو بجوارها قتلوا ألف شخص .
وبعد أنتهاء الحرب تصارع كل من الانحاد السوفيتي و الولايات المتحدة إلى استقطاب العلماء الألمان الذين عملوا في مشروعات تطوير الصواريخ النازية.
الأسس العلمية
في أي نظام ما يساوي مضروب التسارع في الكتلة أي ( مضروب تغير السرعة في الكتلة) مجموع القوى الخارجية. فإذا حددنا النظام كما هو مبين في الصورة فإنه لا توجد قوى خارجية أي قوى تؤثر على المنظومة من خارج الحدود لكن جزيئات الغاز تتحرك بسرعة و على ذلك فإن على الصاروخ أن يتحرك في الاتجاه المعاكس للغاز بحيث يكون مضروب وزنه في سرعته يساوي عكس مضروب وزن الغاز في سرعته حتى يكون المجموع صفرا.
البنية
الاستعمالات تستعمل الصواريخ لأغراض متعددة منها:
التجسس و اثبات القدرة: أطلق السوفييت سبوتنيك1 في الرابع من أكتوبر عام 1957م ، ومنذ ذلك اليوم كانت بداية سباق الفضاء بين الاتحاد السوفيتي و الولايات المتحدة، حيث أطلقت كلتا الدولتين أقماراً صناعية و سفن فضاء مأهولة و غير مأهولة على متن صواريخ ضخمة لاستكشاف الفضاء و دراسة خطط مستقبلية لبناء محطات فضائية مأهولة بالبشر، وكان هناك أبحاث سرية لتحقيق ذلك ، و استخدمت الصواريخ لحمل أقمارصناعية تستخدم بغرض التجسس، تحمل تلك الصواريخ مناظير و مستشعرات حرارية و أجهزة تصنت ذات قدرات هائلة قادرة على كشف مواقع المنشئات العسكرية و رصد تحركات القطع العسكرية على سطح الأرض، وكل ذلك يتم من خلال أقمار صناعية تحلق في مدارات خارج الغلاف الجوي للأرض ، ومازال هذا السباق مستمراً و تشارك فيه دول عديدة مثل الصين و فرنسا و اليابان و تايوان و إنجلترا، و لكن أصبح الهدف هو اثبات السبق العلمي و التقني للدولة.
من الاستخدامات الأخرى للصواريخ حمل الأقمار الصناعية و سفن الفضاء إلى مداراتها حول الأرض.
الاستخدام العسكري : حيث تلعب الصواريخ دوراً هاماً في الحروب الحديثة، فهى العمود الفقرى للدفاع جوي ، و أيضاً هناك الصواريخ المضادة للدبابات ، و الموجهة نحو أهداف أرضية أو بحرية أو حتى فضائية، وتصنف الصواريخ في هذا المجال كالآتي:صواريخ(أرض-أرض)مثل صواريخ سكود الروسية و(أرض-جو)مثل صواريخ سام الروسية و باتريوت الأمريكية صواريخ و(أرض-سطح)-وهذا النوع من الصواريخ ينطلق من محطات أرضية، هناك أيضاً صواريخ(جو-جو)مثل صواريخ سايد وايندر و(جو-سطح)و(جو-أرض)-وهذه الصواريخ تطلقها الطائرات، وهناك صواريخ(سطح-أرض) مثل صواريخ كروز، و أيضاً هناك صواريخ (سطح-جو)و(سطح-سطح)وهذه الصواريخ تطلقها السفن، وأيضاً تنطلق الصواريخ من الغواصات و إلى الغواصات، و قد تحمل تلك الصواريخ التي تنطلق من الغواصات روءساً نووية.
الصاروخ العملاق ساتورن ـ ف الذي حمل أول رائد فضاء إلى القمر يصعد من برج الإطلاق. الصواريخ هي المركبات الوحيدة التي تستعمل لإطلاق البشر والمعدات إلى الفضاء. الصاروخ نوع من المحركات التي تنتج طاقة أكثر من مثيلاتها ذات الحجم نفسه أو أي محرك آخر. يستطيع الصاروخ أن ينتج طاقة تقدر بأكثر من 3،000 ضعف طاقة محرك السيارة. يمكن استعمال كلمة صاروخ كذلك لوصف المركبة التي تساق بوساطة محرك الصاروخ.
تُصنع الصواريخ من عدة أحجام، وتستعمل بعضها لقذف الألعاب النارية إلى أعلى، ويبلغ طولها حوالي 60سم. وتحمل الصواريخ التي طولها من 15 إلى 30 م القذائف الضخمة لضرب أهداف الأعداء البعيدة، وعمومًا لابد من وجود الصواريخ الكبيرة والقوية لحمل الأقمار الصناعية إلى مدار حول الأرض. ويبلغ ارتفاع الصاروخ ساتورن-ف الذي حمل رواد الفضاء إلى القمر أكثر من 110م.
يستطيع الصاروخ أن ينتج طاقة هائلة لكنه يحرق الوقود بسرعة. لهذا السبب، يجب أن يتوفر للصاروخ كمية كبيرة من الوقود ليعمل حتى ولو فترة قصيرة. فقد أحرق ساتورن ـ ف مثلاً أكثر من 2،120،000 لتر من الوقود خلال الـ 2،75 دقيقة الأولى لطيرانه. وتصبح الصواريخ ساخنة جدًا بحرقها للوقود. وتصل حرارة بعض محركاتها إلى 3،300°م، أي ضعف درجة انصهار الصلب تقريبًا.
تطورت تقنية الصواريخ أساسًا بعد الحرب العالمية الثانية (1939-1945م). وهي تقنية غاية في التعقيد؛ لأن محرك الصاروخ يجب أن يصمد، ليس فقط لدرجات الحرارة العالية، ولكن للضغط العالي الفائق والقوى الميكانيكية القوية أيضًا، وأخيرًا ينبغي أن يظل خفيفًا لتحقيق مهامه. ويستعمل الناس الصواريخ أساسًا للبحث العلمي ورحلات الفضاء والحرب.
استعملت الصواريخ في الحروب طوال مئات السنين. ففي القرن الثالث عشر الميلادي كان الجنود الصينيون يطلقونها على الجيوش المهاجمة. واستعملت القوات البريطانية الصواريخ للهجوم على فورت مكهنري في ماريلاند الأمريكية، خلال حرب عام 1812(1812- 1814م). وصف فرانسيس سكوت كي، بعد مشاهدته للحرب، في كلماته التي صاغها في النشيد القومي للولايات المتحدة، الوهج الأحمر للصواريخ بأنها شعار النجم اللامع. وخلال الحرب العالمية الأولى (1914ـ 1918م)، استعمل الفرنسيون الصواريخ لإسقاط طائرات العدو. وهجمت ألمانيا على بريطانيا بالصواريخ خلال الحرب العالمية الثانية. وتستطيع الصواريخ اليوم أن تحطم الأقمار الصناعية في مدارها حول الأرض، وكذلك الطائرات النفاثة والقذائف التي تطير أسرع من الصوت.
يستعمل العلماء الصواريخ للاكتشافات والبحث في المجال الجوي والفضاء. وتحمل الصواريخ أجهزة علمية دقيقة في السماء لجمع المعلومات عن الهواء المحيط بالأرض. ومنذ عام 1957م، أطلقت الصواريخ مئات الأقمار الصناعية في مداراتها حول الأرض. وهذه الأقمار الصناعية تؤدي عدة أغراض؛ منها أنها تكون بمثابة وسيلة اتصالات، كما تقوم بجمع معلومات عن جو الأرض للدراسة العلمية. تحمل الصواريخ أجهزة إلى الفضاء لاستكشاف القمر والكواكب وحتى الفضاء الذي بين الكواكب.
توفر الصواريخ الطاقة اللازمة لرحلات الإنسان إلى الفضاء التي بدأت عام 1961م. وفي 1969م حملت الصواريخ روّاد الفضاء في أول هبوط على القمر. وفي عام 1981م، حمل الصاروخ أول مكوك فضاء إلى مدار حول الأرض. وفي المستقبل يمكن أن تحمل الصواريخ الإنسان إلى المريخ والكواكب الأخرى.
كيف يعمل الصاروخ
كيف يعمل الصاروخ متعدد المراحل. يحمل الصاروخ ذو المرحلتين دافعًا ومحركًا صاروخيًا واحدًا أو أكثر في كل مرحلة. المرحلة الأولى تطلق الصاروخ، وبعد حرق الدافع تسقط بعيدًا عن الصاروخ. المرحلة الثانية تبدأ وتحمل الرؤوس المحملة إلى المدار الأرضي أو حتى أبعد من ذلك إلى الفضاء. قانون الحركة الأساسي الذي اكتشفه العالم البريطاني السير إسحق نيوتن في القرن السابع عشر الميلادي يصف كيف يعمل الصاروخ. هذا القانون ينص على أن لكل فعل رد فعل مساوٍ له في المقدار ومضادٍّ له في الاتجاه. انظر: الحركة. يشرح قانون نيوتن كيف يؤدي تدفق الهواء من بالون صغير إلى دفع البالون للطيران. ويعمل أقوى الصواريخ بنفس الطريقة.
يحرق الصاروخ وقودًا خاصًا في غرفة احتراق فينتج غاز يتمدد بسرعة. ويضغط هذا الغاز داخل الصاروخ بالتساوي في كل الاتجاهات. وضغط هذا الغاز على أحد جوانب الصاروخ يساوي ضغط الغاز على الجانب المقابل. ويخرج الغاز من مؤخرة الصاروخ من خلال فوهة. ولا يعادل هذا الغاز المعدم ضغط الغاز على مقدمة الصاروخ. وهذا الضغط غير المتساوي هو الذي يدفع الصاروخ للأمام.
وسريان الغاز خلال فوهة الصاروخ هو الفعل الذي وُصِفَ في قانون نيوتن. ويكون رد الفعل هو الدفع المستمر قوة الدفع للصاروخ بعيدًا عن خروج الغاز المعدم.
الوقود الدافع للصاروخ. تحرق الصواريخ مجموعة من المواد الكيميائية تُسمى الوقود الدافع يتكوَّن من: 1-وقود؛ مثل البنزين والبرافين أو الهيدروجين السائل 2- مادة مؤكسدة؛ مثل رباعي أكسيد النيتروجين، أو الأكسجين السائل. والمادة المؤكسدة تمد الوقود بالأكسجين اللازم للاحتراق. ويُمَكِّن هذا الأكسجين الصاروخ من العمل في الفضاء الخارجي حيث لا يوجد هواء.
كذلك تعمل المحركات النفاثة بوساطة الفعل ورد الفعل. لكن الوقود النفاث لا يحتوي على مادة مؤكسدة. ويسحب المحرك النفاث الأكسجين من الهواء. ولهذا السبب لا يعمل خارج المجال. انظر: الدفع النفاث.
يحرق الصاروخ الوقود الدافع بمعدل سريع، وأغلب الصواريخ تحمل كمية تبقى عدة دقائق فقط. لكن الصاروخ ينتج هذه القوة الساحبة التي تقدر على قذف مركبات ثقيلة بعيدًا في الفضاء.
يحرق الصاروخ أغلب الوقود الدافع خلال الدقائق القليلة الأولى للطيران. وخلال هذا الوقت تقل سرعة الصاروخ بالاحتكاك بالهواء، والجاذبية، ووزن الوقود. يعوق احتكاك الهواء الصاروخ طوال مساره في الغلاف الجوي. وعندما ينطلق الصاروخ إلى أعلى، فإن الهواء يصبح أقل ويقل الاحتكاك في الفضاء، ولا يوجد احتكاك يؤثر على الصاروخ. وتشد الجاذبية الأرضية الصاروخ إلى الأرض، لكن هذا الجذب يقل كلما ارتفع الصاروخ بعيدًا عن الأرض. وعندما يحرق الصاروخ الوقود فإن وزنه يقل.
الصاروخ متعدد المراحل. يتكون الصاروخ من عدة مقاطع تسمى مراحل، وكل مرحلة لها محرك صاروخي ووقود دافع. طوَّر المهندسون الصاروخ متعدد المراحل من أجل رحلات طويلة خلال الغلاف الجوي وإلى الفضاء. فهم يحتاجون إلى صواريخ تستطيع أن تصل إلى سرعات أكبر من سرعات الصواريخ ذات المرحلة الواحدة. ويمكن للصاروخ متعدد المراحل أن يصل إلى سرعات أعلى نتيجة نقصان وزنه بإسقاط مراحل تم استعمال وقودها. وتبلغ سرعة الصاروخ ذي الثلاث مراحل تقريبًا ثلاثة أضعاف سرعة الصاروخ ذي المرحلة الواحدة.
تسمى المرحلة الأولى المعزِّز، وتقذف الصاروخ بعد حرق وقود المرحلة الأولى، وتُسقِط المركبة هذا المقطع وتستعمل المرحلة الثانية. ويظل الصاروخ يستعمل مرحلة بعد الأخرى. وأغلب صواريخ الفضاء ذات مرحلتين أو ثلاث مراحل.
إطلاق الصاروخ. تحتاج صواريخ الفضاء إلى قواعد إطلاق خاصة مجهزة. وأغلب فاعلية القذف تكون حول مركز قاعدة القذف التي ينطلق الصاروخ منها. ويحتوي مكان القذف على 1- مبنى الهيكل الذي يكمل منه المهندسون الخطوات النهائية في بناء الصاروخ 2- مبنى الخدمة الذي يتأكد فيه العمال من سلامة الصاروخ قبل إطلاقه 3- مركز التّحكُّم، حيث يوجِّه العلماء إطلاق وطيران الصاروخ. وتقوم محطات الرصد التي تقع في أماكن مختلفة حول العالم بتسجيل مسار رحلة الصاروخ.
يجهز العلماء والمهندسون الصاروخ للإطلاق بطريقة الخطوة خطوة التي تسمَّى العدّ التنازلي، فيرسمون كل خطوة على فترة معينة خلال العد التنازلي، ويتم إطلاق الصاروخ عندما يصل العدّ التنازلي إلى الصفر. ويمكن أن تتسبّب الأجواء غير المرغوب فيها أو أي صعوبة أخرى في إيقاف الإطلاق الذي يوقف مؤقتًا العد التنازلي.
كيف تستعمل الصواريخ
تستعمل الدول الصواريخ أساسًا لتوفير أدوات نقل تنطلق بسرعات عالية خلال الغلاف الجوي والفضاء. وتُعَدُّ الصواريخ ذات قيمة عالية: 1- للاستعمالات العسكرية 2- لأبحاث الغلاف الجوي 3- لإطلاق مجسات الاكتشاف والأقمار الصناعية 4- للسفر عبر الفضاء.
صاروخ حربي يُسمى صاروخ تو، يطلق بطاقم مكون من اثنين. ويمكن إطلاقه من الأرض أو من مركبة. الاستعمال العسكري. يتفاوت استخدام الجيوش للصواريخ من صواريخ حروب الميدان الصغيرة إلى القذائف الموجهة العملاقة التي تطير عبر المحيط.
البازوكا. صاروخ صغير مقذوف يحمله الجنود، وهو مضاد للمركبات المصفحة. لدى البازوكا قوة اختراق مثل دبابة صغيرة. انظر: البازوكا. وتستعمل الجيوش صواريخ أكبر لتفجير القنابل بعيدًا خلف خطوط الأعداء، وكذلك لإسقاط طائرات العدو. وتحمل الطائرات المقاتلة صواريخ موجهة للهجوم على الطائرات الأخرى والأهداف الأرضية. وتستعمل السفن البحرية الصواريخ الموجهة للهجوم على السفن الأخرى، والأهداف الأرضية والطائرات.
وأحد أهم الاستعمالات الحربية للصواريخ هو إطلاق نوع من القذائف الموجهة بعيدة المدى، تسمى القذائف البالستية العابرة للقارات. وهذه القذائف تستطيع الانطلاق لمدى أكبر من 8،000 كم لتفجير هدف للعدو بالمتفجرات النووية. وهناك مجموعة من الصواريخ القوية تحمل القذيفة عابرة القارات وتسيرها خلال الأجزاء الأولى من رحلتها، ثم تأخذ القذائف باقي طريقها إلى الهدف. انظر: القذيفة الموجهة.
صاروخ سبر مثل "تاوروس ـ نيكي ـ توماهوك"، يجمع معلومات عن الغلاف الجوي العلوي. ترسل أجهزة الراديو في الصاروخ المعلومات إلى الأرض للدراسات العلمية.
صاروخ أطلس ـ قنطورس يضيء قاعدة قذفه خلال الانطلاق. هذه الصواريخ تضع الأقمار الصناعية العلمية، مثل المرصد الفلكي الدائر، في مداراتها حول الأرض. أبحاث الغلاف الجوي. يستعمل العلماء صواريخ لاكتشاف الغلاف الجوي المحيط بالأرض، وتحمل الصواريخ الصوتية التي تسمى أيضًا صواريخ الأرصاد الجوية أجهزة مثل: مقياس الضغط الجوي، وآلات التصوير والترمومترات إلى الغلاف الجوي. وتجمع هذه الأجهزة المعلومات عن الغلاف الجوي، وترسلها بالراديو لأجهزة الاستقبال الأرضية. تسمّى هذه الطريقة في جمع المعلومات وإرسالها لمسافات بعيدة بالراديو قياس البعد انظر: قياس البعد.
توفر الصواريخ الطاقة اللازمة لطائرات الأبحاث العلمية. ويستعمل المهندسون هذه الطائرات في تطوير سفن الفضاء. ويتعلم المهندسون من خلال دراسة رحلات هذه الطائرات كالصاروخ الموجّه إكس -15، كيفية التحكم في المركبة للطيران أسرع من الصوت عدة مرات.
طلاق المجسات والأقمار الصناعية. تُسمَّى الصواريخ التي تحمل أجهزة أبحاث في رحلات طويلة لاكتشاف المجموعة الشمسية المجسات. وتجمع المجسات القمرية هذه المعلومات عن القمر. ويمكنها الطيران إلى أبعد من القمر، والدوران حوله أو الهبوط على سطحه. وتأخذ المجسات بين الكوكبية رحلة ذات اتجاه واحد إلى الفضاء من خلال الكواكب. وتجمع المجسات الكوكبية المعلومات عن الكواكب. ويحلِّق المجس الكوكبي في مدار حول الشمس مع الكوكب المكتشف. وقد اكتشف أول مجس كوكبيّ كوكبيْ المريخ، والزهرة. كما اكتشفت المجسات أيضًا كلاً من المشتري، وزحل، ونبتون.
تحمل الصواريخ الأقمار الصناعية في مدارات حول الأرض. وتجمع بعض هذه الأقمار المعلومات للبحث العلمي. وينقل بعضها الآخر المحادثات الهاتفية أو البث الإذاعي والتلفازي عبر المحيطات. انظر : قمر الاتصالات. وتستخدم الجيوش الأقمار الصناعية للاتصالات والحماية ضد الهجوم الصاروخي المفاجئ، كذلك يستخدمون الأقمار الصناعية لتصوير قواعد صواريخ الأعداء.
تُسمّى الصواريخ التي تحمل المجسات والأقمار الصناعية صواريخ حاملة أو عربات الإطلاق، وأغلب هذه الأنواع تكون ذات مرحلتين أو ثلاث أو أربع مراحل. وهذه المراحل تضع القمر الصناعي على ارتفاعه المناسب، وتعطيه سرعة كافية تصل إلى 29،000كم/ساعة ليظل في المدار. ويجب أن تكون سرعة المجسات بين الكوكبية حوالي 40،200كم/ساعة للتخلص من الجاذبية الأرضية والاستمرار في رحلتها.
السفر عبر الفضاء. توفر الصواريخ الطاقة لمركبة الفضاء التي تدور حول الأرض وتطير إلى القمر والكواكب. وهذه الصواريخ، مثل تلك المستعملة في قذف المجسّات والأقمار الصناعية، تسمى الصواريخ الحاملة أو عربات الإطلاق.
كانت الصواريخ الحربية أو الصواريخ الصوتية أولى السفن الفضائية التي تم إطلاقها، والتي حوَّرها المهندسون قليلاً لحمل سفن الفضاء؛ فقد أضافوا مثلاً مراحل إلى بعض هذه الصواريخ لزيادة طاقتها. وأحيانًا يلجأ المهندسون إلى صواريخ أصغر كمرحلة أولى لقذف مركبة فضاء. وتوفّر هذه الأداة الإضافية قوة دفع إضافية لقذف سفينة فضاء أثقل.
صاروخ سوفييتي في منصته قبل انطلاق رحلة الفضاء سويوز 6. وعندما تُرفع الأبراج على جانبي المنصّة،يستطيع الفنيون العمل في كل جزء من الصاروخ. كان الصاروخ ساتورن ـ ف الذي حمل أول رائد فضاء أمريكيًا إلى القمر، أقوى مركبة إطلاق أمريكية. وكان يزن أكثر من 2،7 مليون كجم قبل الإطلاق وكان طوله 111 م. وكان من الممكن أن يحمل سفينة فضاء تزن أكثر من 45،000 كجم للقمر. وقد استعمل ساتورن ـ ف 11 محركًا صاروخيًا للدفع في ثلاث مراحل.
يستطيع مكوك الفضاء القابل للاستخدام مرات عديدة أن يحلِّق في الفضاء ويعود إلى الأرض ليقوم برحلات أخرى. ويمكن لمثل هذا المكوك أن يحمل آدميين ومستلزمات إلى ومن محطات فضائية قد تدور حول الأرض. كذلك سوف توفر المراكب الصاروخية الموجهة الأصغر التي تسمى سفن الفضاء التنقل لمسافات قصيرة يومًا ما، مثل التنقل من مركبة مكوك إلى محطة فضاء، أو من قمر صناعي إلى آخر. هذه المركبات سوف توفر القوة للمجسات الفضائية التي تطلق إلى الكواكب من مدار الأرض. انظر: رحلات الفضاء.
المرصد الفلكي المداري يقوم الفنيون بتجهيزه للانطلاق. هذا القمر الصناعي يجمع معلومات عن النجوم والمجرات البعيدة جدًا في الفضاء. استعمالات أخرى. استعملت الصواريخ طوال عدة سنوات كإشارات استغاثة من السفن والطائرات وكذلك من الأرض. كذلك تطلق الصواريخ خطوط الإنقاذ للسفن في المحيطات. كما تقوم صواريخ صغيرة تسمى جاتو بمساعدة الطائرات ثقيلة الحمولة على الإقلاع. وقد استعملت الصواريخ لفترة طويلة في الألعاب النارية. انظر: الألعاب النارية. ويستعمل العلماء الصواريخ لرش السحب بالمواد الكيميائية للتحكم في الطقس. انظر: الطقس.
أنواع الصواريخ
هناك أربعة أنواع رئيسية من الصواريخ: 1- صواريخ الوقود الدافع الصلب 2- صواريخ الوقود الدافع السائل 3- الصواريخ الكهربائية 4- الصواريخ النووية.
صاروخ الوقود الدافع الصلب يحرق مادة صلبة تسمى الحبوب. يصمم المهندسون أغلب الحبوب بلب أجوف. ويحترق الدافع من اللب إلى الخارج. ويحجب الدافع غير المشتعل غلاف المحرك من حرارة الاحتراق. صواريخ الوقود الدافع الصلب. تحرق مادة بلاستيكية أو مطاطية تسمى الحبوب. وتتكون الحبوب من الوقود والمؤكسد في الحالة الصلبة. على خلاف بعض أنواع الوقود السائل، فإن الوقود والمؤكسد للمادة الصلبة لا يشتعلان إذا تلامسا مع بعضهما. ويجب إشعال الوقود بإحدى طريقتين: يمكن إشعاله بحرق شحنة صغيرة من المسحوق الأسود وهو خليط من نترات البوتاسيوم، والفحم النباتي والكبريت. كذلك يمكن إشعال الوقود الصلب بالتفاعل الكيميائي لمركب كلور سائل يرش على الحبوب.
تتراوح درجة الحرارة في غرفة الاحتراق للوقود الصلب للصاروخ بين 1،600° و 3،300°م. يستعمل المهندسون في أغلب هذه الصواريخ الفولاذ القوي جدًا أو التيتانيوم لبناء حوائط الغرفة حتى تقاوم الضغط الذي ينشأ عن درجات الحرارة العليا. كذلك يستعملون الألياف الزجاجية أو مواد بلاستيكية خاصة.
يحترق الوقود الصلب أسرع من الوقود السائل، لكنه ينتج قوة دفع أقل من التي تنتج من احتراق نفس الكمية من وقود سائل في نفس الوقت. يظل الوقود الصلب فعالاً لفترات طويلة من التخزين ولا يمثل خطورة تذكر حتى عند الإشعال. ولا يحتاج الوقود الصلب إلى أجهزة للضخ والمزج اللازمة للوقود السائل، لكنه من ناحية أخرى، صعب إيقافه وإعادة إشعاله. والمفترض أن تتوفر لرواد الفضاء القدرة على إيقاف وبدء عملية احتراق الوقود حتى يمكنهم التحكم في طيران سفنهم الفضائية. وهناك طريقة واحدة تستعمل لوقف الاحتراق وهي نسف مقطع الفوهة من الصاروخ. لكن هذه الطريقة تمنع إعادة الإشعال. تُستعمل صواريخ الوقود الصلب أساسًا في استخدامات الجيوش. ويجب أن تكون الصواريخ الحربية مستعدة للانطلاق في أي لحظة، ويمكن تخزين الوقود الصلب أفضل من أي وقود دافع آخر. وتوفر صواريخ الوقود الصلب الطاقة للصواريخ العابرة للقارات، بما في ذلك صاروخ مينوتيمان-2، وإم إكس، وكذلك للقذائف الصغيرة مثل هوك، وتالوس، وتِريرْ. وتُسْتَعْمَل صواريخ الوقود الصلب أداة إضافية لحمل الصواريخ مثل: صواريخ جاتو، وتستعمل كذلك بمثابة صواريخ صوتية. كما تستعمل صواريخ الوقود الصلب في عروض الألعاب النارية.
صاروخ الوقود الدافع السائل يحمل الوقود والمؤكسد كلا في خزان منفصل. يدور الوقود خلال غلاف تبريد المحرك قبل دخوله غرفة الاحتراق. هذه الدورة ترفع درجة حرارة الوقود للاحتراق وتساعد على تبريد الصاروخ. صواريخ الوقود الدافع السائل. تحرق خليطًا من الوقود والمؤكْسِد في شكل سائل. وتحمل هذه الصواريخ الوقود والمؤكْسِد في صهريج منفصل. وتغذي شبكة من الأنابيب والصمامات عنصري الوقود داخل غرفة الاحتراق. وينبغي أن يمر الوقود أو المؤكسد حول الغرفة قبل المزج مع العناصر الأخرى. هذا من شأنه أن يبرِّد غرفة الاحتراق ويسخِّن مسبقًا عناصر الوقود للاشتعال.
تتضمن طرق تغذية الوقود والمؤكْسد إلى غرفة الاحتراق استعمال إما مضخات أو غاز ذي ضغط عال. وأكثر الطرق المألوفة هي استعمال المضخات. ويشغل الغاز المنتج باحتراق جزء صغير من الوقود المضخة التي تدفع الوقود والمؤكسد إلى غرفة الاحتراق. أما الطريقة الأخرى، فيدفع الغاز عالي الضغط الوقود والمؤكْسد إلى غرفة الاحتراق. ويمكن الحصول على مصدر الغاز ذي الضغط العالي من النيتروجين، أو بعض الغازات الأخرى المخزونة تحت الضغط العالي، أو من حرق كمية صغيرة من الوقود.
بعض أنواع الوقود السائل التي تسمى ذاتية الاشتعال تشتعل عندما يتلامس الوقود والمؤكسد. لكن معظم أنواع الوقود السائل تحتاج إلى جهاز إشعال. يمكن أن يشتعل الوقود السائل عن طريق شرارة كهربائية، أو حرق كمية صغيرة من مادة متفجرة صلبة داخل غرفة الاحتراق. يستمر الوقود السائل في الاحتراق ما دام سريان خليط الوقود والمؤكسد مستمرًا في الوصول إلى غرفة الاحتراق.
تُبنى أغلب خزانات الوقود السائل من الفولاذ أو الألومنيوم الرقيق عالي الصلابة. وأغلب غرف الاحتراق في هذه الصواريخ مصنوعة من الفولاذ أو النيكل.
يُنْتج الوقود السائل عادة قوة دفع أكبر من التي تنتج من احتراق نفس الكمية من الوقود الصلب في نفس الفترة الزمنية. كذلك فهو أسهل في بدء وإيقاف الاحتراق من الوقود الصلب. ويمكن التحكم في الاحتراق فقط بفتح أو غلق الصمامات.لكن يصعب التعامل مع الوقود السائل. فإذا خلطت عناصر الوقود دون إشعال، فإن الخليط سوف ينفجر بسهولة. كذلك يحتاج الوقود السائل إلى صواريخ أكثر تعقيدًا عما في حالة الوقود الصلب.
يستعمل العلماء صواريخ الوقود السائل لأغلب السفن التي تطلق إلى الفضاء؛ فعلى سبيل المثال، وفرت صواريخ الوقود السائل الطاقة للمراحل الثلاث في إطلاق مركبة ساتورن - ف.
صاروخ أيوني وهو نوع من الصواريخ الكهربائية. تحول ملفات التسخين الوقود مثل السيزيوم إلى بخار. تغير شبكة تأيين متسامتة من البلاتين الساخن أو التنجستن البخار إلى سيل من الجسيمات المشحونة كهربائيًا تسمى الأيونات. الصواريخ الكهربائية. تستعمل الطاقة الكهربائية لإنتاج قوة الدفع. وهذه الصواريخ تحتوي على 1- صواريخ القوس الكهربائي النفاث 2- صواريخ البلازما النفاثة 3- الصواريخ الأيونية. ويمكن أن تعمل الصواريخ الكهربائية لفترة أكثر بكثير من أي نوع آخر، لكنها تنتج قوة دفع أقل.
لا يقدر الصاروخ الكهربائي على رفع سفينة فضاء خارج المجال الجوي للأرض، لكنه يستطيع أن يدفع مركبة خلال الفضاء. ويعمل العلماء على تطوير الصواريخ الكهربائية لرحلات فضاء طويلة في المستقبل.
صواريخ القوس الكهربائي النفاثة تُسخِّن وقودًا غازيًا بشرارة كهربائية تسمى القوس الكهربائي. وهذه الشرارة يمكن أن تسخِّن الغاز إلى ثلاثة أو أربعة أضعاف درجة الحرارة المنتجة بصواريخ الوقود السائل أو الصلب.
صواريخ البلازما النفاثة نوع من صواريخ القوس الكهربائي النفاثة. يُوَلَّد سريان الغاز المتفجر بوساطة قوس كهربائي يحتوي على جسيمات كهربائية مشحونة. ويُسمى خليط الغاز وهذه الجسيمات بلازما. وتستعمل صواريخ البلازما النفاثة تيارًا كهربائيًا ومجالاً كهربائيًا لزيادة سرعة سريان البلازما من الصاروخ.
الصواريخ الأيونية تنتج قوة دفع بوساطة سريان جسيمات مشحونة كهربائية تسمى الأيونات. يُسمى جزء من الصاروخ الشبكة الأيونية التي تنتج الأيونات كأنها غاز خاص يسير فوق سطح الشبكة. تزداد سرعة سريان الأيونات من الصاروخ بوساطة مجال كهربائيِّ.
صاروخ نووي يستعمل الحرارة من مفاعل نووي لتحويل الوقود السائل إلى غاز. يمر معظم الوقود خلال المفاعل. ويسخن بعض الوقود بوساطة فوهة الصاروخ ويمر خلال التوربين الذي يدير مضخة الوقود. الصواريخ النووية. تُسخِّن الوقود بوساطة مفاعل نووي، وهو آلة تنتج الطاقة عن طريق انشطار الذرات. يصبح الوقود المراد تسخينه بسرعة غازًا متمددًا ساخنًا. وهذه الصواريخ تنتج طاقة تعادل ضعفي أو ثلاثة أضعاف ما تنتجه صواريخ الوقود الدّفعي الصلب أو السائل. ويعمل العلماء على تطوير الصواريخ النووية لرحلات الفضاء.
يُضَخ في الصواريخ النووية هيدروجين سائل إلى المفاعل خلال الجدار المحيط بمحرك الصاروخ. وتساعد عملية الضخ هذه على تبريد الصاروخ، وكذلك على تسخين الهيدروجين السائل. ويمر خلال المفاعل مئات من القنوات الضيقة. وعندما يمر الهيدروجين السائل خلال هذه القنوات، تقوم حرارة من المفاعل بتحويل الوقود إلى غاز متمدد في الحال. ويمر الغاز خلال فوهة العادم بسرعات قد تصل إلى 35،400كم/ساعة.
الثلاثاء، 26 مايو 2009
الخريطة
الخريطة إحدى المطبوعات التي تمثِّل الأرض أو أي جرم سماوي، ويعبِّر معظم الخرائط عن سطح الأرض كله أو بعضه. وهناك بعض الخرائط تمثل الكواكب الأخرى كالقمر أو مواقع النجوم في الفضاء الواسع. وغالبيتها مستوية، وبعضها له سطح بارز، ونموذج الكرة الأرضية خريطة لسطح الأرض على شكل كرة.
تُمثَّل المعلومات على الخرائط إما بخطوط وإما بألوان أو أشكال أو غير ذلك من الرموز. وتحل هذه الرموز محل بعض الظواهر كالأنهار والمدن والطرق للتقليل من حجمها. فعلى سبيل المثال، يمثل سنتيمتر واحد على الخريطة مسافة تعادل 500م على سطح الأرض.
للخريطة عدة فوائد منها: تحديد الأماكن وقياس المسافات وتخطيط الرحلات وتحديد الطرق ويستعملها ملاحو السفن والطائرات في رحلاتهم المختلفة. كما تزودنا بمعلومات عن المناخ والسكان وطرق المواصلات. كما يمكن التعرف بوساطتها على أنماط توزيع السكان واستخدام الأرض. تُستعمل أيضًا في إجراء مقارنات والخروج باستنتاجات مهمة. مثال ذلك، يقوم الجيولوجيون بدراسة الخرائط البنيوية لسطح الأرض للكشف عن مصادر الموارد الطبيعية.
من المحتمل أن يكون الإنسان قد رسم خرائط بدائية حتى قبل أن يعرف اللغة المكتوبة قبل حوالي 5,500 سنة. وعلى مر العصور، قام الإنسان بمزيد من الاكتشافات مضيفاً إلى الخرائط معلومات حديثة. وقد جعلت الاختراعات العلمية الخرائط أكثر دقة. أما اليوم، فإن معظم الخرائط تعتمد في رسمها على الصور الجوية الملتقطة من الجو. وعلم الخرائط هو العلم الذي يهتم بعمل الخرائط وقراءتها، ويسمى صانع الخرائط ومدرسها الخرائطي.
أنواع الخرائط
توجد عدة أنواع من الخرائط. وأكثرها شيوعاً هي: 1- الخرائط المرجعية العامة 2- خرائط الحركة 3- الخرائط الموضوعية 4- الخرائط التقييمية.
الخرائط المرجعية العامة. وهي تُعرِّف الظاهرات الجغرافية المختلفة وتحدد مواقعها. تحتوي هذه الخرائط على التضاريس والمسطحات المائية والحدود السياسية والمدن والبلدان والقرى والطرق وغير ذلك. وتُستخدم الخرائط العامة في تحديد مواقع الأمكنة وملاحظة علاقتها مع غيرها من الأماكن. فخرائط الدول والقارات في الأطالس هي أمثلة على هذا النوع. تسمى الخرائط التي توضح حدود الولايات والدول والتجمعات السياسية وغيرها من الوحدات السياسية الخرائط السياسية. أما الخرائط التي تمثل تضاريس سطح الأرض كالجبال والأنهار والبحيرات فتسمى الخرائط الطبيعية أو الخرائط الأرضية.
خرائط الحركة. صممت لمساعدة السكان في التعرف على طرقهم عندما يتنقلون من مكان الى آخر، سواء أكانت هذه الطرق برية أم بحرية أم جوية. وتُسمى الخرائط التي تختص بتمثيل طرق الملاحة البحرية والجوية لوحات.
خرائط الطرق مألوفة أكثر من غيرها. وتعبر هذه الخرائط عن عدة مستويات من الطرق، مثل طرق السيارات والطرق ذات الأربع مسارات ومسارات المتنزهين، كما توضح مواقع المدن والبلدان والمتنزهات العامة، وغيرها من المواقع التي تُربط بوساطة هذه الطرق. يستخدم المسافرون خرائط الطرق لرسم مسار رحلاتهم على الطرق الموضحة عليها.
خرائط المرور تبين خطوط الحافلات، وخطوط سكة الأنفاق وغيرها من خطوط النقل العام في المدن. تساعد هذه الخرائط الناس في الوصول إلى أماكنهم بوساطة النقل العام.
لوحات الملاحة الجوية. هي خرائط تُستخدم لأغراض الملاحة الجوية، حيث يحلق الطيارون في الطائرات الصغيرة، على ارتفاع منخفض وفق مسارات موضحة على لوحات خاصة تُسمى لوحات الطيران المرئي. يبين على هذه اللوحات بعض المعالم الأرضية مثل الجسور والطرق والسكك الحديدية والأنهار والبلدان. كما يوضَّح عليها مواقع المطارات ومناسيب الجبال وبعض العوائق. ويستعمل بعض ملاحي الطائرات التي تطير على ارتفاع منخفض وجميع أطقم الطائرات التي تطير على ارتفاع كبير لوحات الطيران الآلي التي صُمِّمت للملاحة بالراديو. تٌستعمل هذه الخرائط في تحديد مواقع محطات أرضية على طول خطوط الطيران مزودة بمرسلات تبث إشارات مميزة ذات تردد عال يهتدي بها أطقم الطائرات على مواقعهم ومسار رحلاتهم.
لوحات الملاحة البحرية تُستخدم في ملاحة السفن والقوارب. وتبين هذه الخرائط عمق المياه، والمنارات، والطافيات، والجُزُر، وغير ذلك من العوائق الخطرة، كالشعاب المرجانية، والجبال المغمورة في الماء، والقريبة من سطح البحر، كما تحدد هذه الخرائط مصادر بث إشارات الراديو المميزة التي يستعملها الملاحون في تحديد مسار رحلاتهم ومواقعهم.
الخرائط الموضوعية. وهي توضح ظواهر جغرافية محددة كالسكان والأمطار أو أحد المصادر الطبيعية. وبشكل عام، فهي تُستخدم لدراسة الأنماط. فقد تبين إحدى الخرائط الموضوعية الأماكن التي ينتج فيها البترول بقارة آسيا، أو قد تمثل تباين سقوط الأمطار في أستراليا من مكان إلى آخر.
تعبِّر العديد من الخرائط الموضوعية عن كمية الظاهرة أو قيمتها إما بالرموز أو بالألوان. مثال ذلك بعض خرائط السكان في هذه الموسوعة، حيث استُخدمت النقط الصغيرة لتمثل كل واحدة منها عددًا محددًا من البشر. ويبين عدد النقط في منطقة ما حجم الثقل السكاني فيها، في حين تم استخدام تدرج الألوان في بعض الخرائط السكانية الأخرى في الموسوعة نفسها. فإن تدرج لون معين يدل على عدد من المستويات للكثافة السكانية.
تمثل بعض الخرائط الموضوعية القيم بوساطة خطوط تصل بين النقاط المتساوية القيمة. ولهذه الخطوط عدة تسميات مثل: أيزولاين وأيزوجرام وأيزاريثم ولكل نوع محدد من هذه الخطوط اسم خاص به. فعلى سبيل المثال، تصل خطوط الضغط المتساوي بين النقاط التي تتساوى في قيم الضغط الجوي. انظر: خط تساوي الضغط الجوي. كما يمكن التعبير بهذه الخطوط على الخرائط المناخية، عن توزع درجات الحرارة والأمطار وغيرها من عناصر الطقس. وتسمى الخطوط التي تصل بين النقاط المتساوية المناسيب على الخرائط الطبوغرافية التي توضح سطح الأرض خطوط الكنتور، وتُستعمل لتوضيح المناطق المتساوية الارتفاع.
تستعمل بعض الخرائط الموضوعية أحياناً التباين الحجمي في التعبير عن الكميات. فقد تعبِّر إحدى خرائط التجارة العالمية للبترول عن حركة البترول العالمية الكثيرة بخطوط انسياب سميكة بينما تمثل الخطوط الدقيقة حركات انسياب أقل.
الخرائط التقييمية. وهي تشبه الخرائط الموضوعية، ولكنها تركز على ظاهرة محددة. إذ إن هذا النوع من الخرائط يبين ثمن أو قيمة ظاهرة معينة. مثال ذلك الخرائط التي توضح بالتفصيل الأحياء السكنية، وكل عمارة على حدة.
قراءة الخريطة
تتطلب قراءة الخريطة قدراً من الخبرة، فينبغي فهم مفاتيح الخريطة (الكشاف) ومقـياس الرسم وشبكة الإحداثيات الجغرافية (خطوط الطول والعرض) وفهارس الخريطة.
مفاتيح الخريطة. وهي قائمة برموز الخريطة وألوانها وشرح ذلك كله، فبعض الرموز تشبه الظاهرة التي تمثلها، مثلاً، شكل شجرة على الخريطة يدل على الغابات أو الحدائق، ولكن هناك رموز كثيرة أخرى لا تدل مباشرة على الظاهرة، كرسم دائرة لتمثل مدينة ما. وقد يمثل الرمز الواحد عدة ظواهر على خرائط مختلفة. فعلى سبيل المثال، يمكن لدائرة واحدة أن تعبر عن عشرين بيتاً متنقلاً، وفي خريطة أخرى قد تعبر عن مكامن بترولية. فمن الضروري أن نقرأ مفتاح الخريطة لنستخلص ما تعنيه رموزها بدقة.
وقد طُبعت معظم الخرائط بطريقة يدل أعلاها على اتجاه الشمال. كما أن العديد من الخرائط تحتوي على سهم يشير الى الشمال.
مقياس الرسم. وهو يوضح العلاقة بين الأبعاد على الخريطة وما يناظرها من مسافات حقيقية على سطح الأرض. تكون مقاييس العديد من الخرائط على شكل خط مستقيم مجزأ إلى عدة أقسام، يدل كل قسم منها على عدد محدد من الأميال، أو الكيلومترات.
وتعبِّر بعض الخرائط عن مقياس الرسم بالكلمات، أو الأرقام، كأن يُذكر على سبيل المثال 1: 10 أو أن السنتيمتر الواحد يمثل 10كم.
وهناك طريقة أخرى للتعبير عن مقياس الرسم هي التعـبير النسبـي أو الكسـري مثـل: 1: 100,000 أو 1/100,000. وهذا يعني بأن وحدة مسافية واحدة على الخريطة يقابلها 100,000 وحدة على سطح الأرض، أي أن سنتيمترًا واحدًا على الخريطة يمثل 100,000سم (كيلو متر واحد) على سطح الأرض.
يعتمد مقدار التفاصيل التي يمكن الحصول عليها من الخريطة على مقياس الرسم المختار. فيجب اختيار مقياس رسم كبير لتمثيل منطقة بتفاصيل كبيرة. تتميز هذه الخرائط بكبر حجمها بالنسبة للمنطقة التي تمثلها. فقد يكون مقياس رسمها يمثل السنتيمتر الواحد فيه 0,1كم. وفي المقابل، فإن الخرائط ذات المقياس الصغير تكون صغيرة بالنسبة للمنطقة التي تمثلها، متخلية عن الكثير من التفاصيل. وقد يمثل السنتيمتر الواحد فيها 100كم.
شبكة الإحداثيات الجغرافية. وتعرف أيضًا بالشبكة المتسامتة وهي شبكة من المربعات موجودة على الخريطة تسهل معرفة ووصف المواقع. وأكثر الإحداثيات شيوعاً خطوط العرض (الزوال) التي تمتد من الشرق إلى الغرب، وخطوط الطول التي تمتد من الشمال إلى الجنوب.
خطوط العرض دوائر متوازية تحيط بالكرة الأرضية من الغرب إلى الشرق، وتوازي هذه الخطوط خط الاستواء الذي يقع في منتصف المسافة بين القطبين. وتدل خطوط العرض على درجة عرض المكان، بالنسبة لخط الاستواء مقدرة بزوايا الدائرة، فأي نقطة تقع على خط الاستواء، يقال بأنها تقع على درجة عرض صفر وتكتب 0° وبذلك، فإن درجة عرض القطب الشمالي 90° شمالاً ودرجة عرض القطب الجنوبي 90° جنوباً. لذا، فإن أي مكان على سطح الأرض له درجة عرض تقع ما بين صفر و90°. انظر: خط الاستواء؛ خط العرض.
خطوط الطول أنصاف دوائر تصل بين القطبين. ومن المتعارف عليه دوليًا أن خطوط الطول تبدأ من خط يمر عند جرينتش قرب لندن، ويعرف هذا الخط بـخط الزوال الأول. وتُستعمل هذه الخطوط في التعرف على درجة طول المكان بالنسبة لشرق أو غرب جرينتش. وكما هو الحال بالنسبة لدرجة العرض، فإن درجة الطول تقدر بالنسبة لزوايا الدائرة. وتتراوح درجات الطول ما بين 0- 180°. ويقع خط الطول 180° إلى الشرق من جرينتش، أو إلى الغرب منه انظر: خط طول جرينيتش؛ خط الزوال.
يمكن استخدام خطوط الطول والعرض لتحديد أي مكان على سطح الأرض بدقة. فعلى سبيل المثال، تقع مدينة نيوأورليانز في ولاية لويزيانا في الولايات المتحدة عند تقاطع خط العرض 30 شمالاً وخط الطول 90 غربًا.
فهارس الخريطة. وهي تساعد في تحديد الأماكن على الخريطة. ويوضع الفهرس على شكل قائمة تضم الظواهر الممثلة على الخريطة بحروف أبجدية. وفي العديد من الأطالس، يوجد إزاء كل ظاهرة درجة عرضها، ودرجة طولها، مما يُسهل تحديد موقعها على الخريطة.
تقسَّم العديد من الخرائط إلى صفوف وأعمدة بوساطة شبكة إحداثيات، وعادة ما توضع الحروف على جوانب الخريطة لتدل على الصفوف، وتُثبت أرقام أعلى وأسفل الخريطة لتدل على الأعمدة. وبذلك يسهل تحديد مكان أية ظاهرة ترد في الفهرس بوساطة تقاطع صف الظاهرة المعنية وعمودها.
مساقط الخرائط
يسمَّى أي نظام لترتيب خطوط الطول وخطوط العرض مرسومة على كرة ما أو لوحة مستوية مسقط الخريطة. ينشئ صانعو الخرائط المساقط وفقًا لمعادلات رياضية، وغالباً ما يتم ذلك بوساطة الحواسيب.
ومن المستحيل إسقاط كرة كسطح الأرض على لوحة مستوية بدون أخطاء؛ إذ إِن مقاييس جميع الخرائط المستوية لا تصل إلى الدقة التامة نظراً لتمدد الأرض في مكان ما على الخريطة وتقلصها في مكان آخر على نفس الخريطة بعد جعلها مستوية.
فبعض الخرائط يحدث فيها تشوُّه في الأبعاد وذلك عندما يُعبَّر عن بعض المناطق بمساحات لا تساوي مساحاتها الحقيقية. وبعضها الآخر تشوَّه فيه الزوايا، فتشوه أشكال البحار والقارات. ولكن، في جميع الخرائط، هناك نقطة أو نقطتين أو خطوطًا لا يحدث عندها أي تشوَّه يذكر. وتسمى هذه النقاط أو الخطوط النقاط المعيارية أو الخطوط المعيارية حيث يأخذ التشوه بالازدياد كلما ابتعدنا عنها.
ويمكن تصنيف مسقط الخريطة على أساس أقل التشوهات التي تظهر على خصائص الرقعة التي تمثلها. فمساقط المساحات المتساوية تمثل مساحات المناطق بصورة دقيقة ولكنها تشوه الشكل. أما المساقط التوافقية فتمثل الزوايا والاتجاهات عند أية نقطة بصورة دقيقة ولكن المساحات تتغير، ولا يمكن لأية خريطة أن تجمع بين الاثنين. قد لا تستعمل بعض الخرائط أي واحد منهما. وليس لهذا النوع اسم بموجب التشوه في المساحات أو الأشكال.
الطريقة الثانية لتصنيف مساقط الخرائط تقوم على أساس الشكل الهندسي للسطح الذي تم رسم المسقط عليه. فنظرياً، تُرسم العديد من الخرائط بمساقط أسطوانية أو مخروطية أو مستوية.
المسقط الأسطواني. هو إسقاط الكرة على أسطوانة. ولذلك، فإن تنفيذه يتم بوساطة معادلات رياضية. ويمكن مشاهدة هذا الإسقاط عندما نتصور ورقة أسطوانية الشكل، ملفوفة حول كرة مضاءة، حيث تنعكس خطوط الكرة على الأسطوانة بشكل مستقيم بدون انحناء. وتحتوي الخريطة الناتجة عن ذلك على خط أو خطين لا يظهر عليهما أي تشوه عند منطقة تلامس الكرة مع الأسطوانة. وتبدو جميع الخطوط على خرائط الإسقاط الأسطواني متوازية فلا تتلاقى خطوط الطول عند القطبين فتظهر جزيرة جرينلاند، على سبيل المثال، أعرض من أمريكا الجنوبية، ولكنها في الحقيقة أضيق بكثير.
ويعد مسقط مركاتور أشهر المساقط الأسطوانية، وهو مسقط توافقي يفيد الملاحين كثيراً، لكون خطوطه تصل بين النقاط على الخريطة بخطوط مستقيمة، فيتِّبعها الملاحون دون تغيير اتجاه البوصلة.
المسقط المخروطي. هو إسقاط الكرة على مخروط. ويمكن مشاهدة الإسقاط المخروطي حين نتصور ورقة على شكل مخروط مفتوح من قاعدته مستقر فوق كرة مضاءة. فتظهر خطوط الكرة على المخروط ممتدة بدون التواء. وتبدو خطوط الطول على المخروط وكأنها تشعّ بخطوط مستقيمة من النقطة التي تقع فوق أحد القطبين مباشرة. بينما تظهر خطوط العرض على شكل أقواس.
ولا يظهر أي تشوه على خط أو خطين عند تماس المخروط مع سطح الكرة. فإذا كان رأس المخروط فوق أحد القطبين، فإن المخروط يلامس الكرة عند العروض الوسطى. ولذلك فإن المسقط المخروطي يُستخدم في رسم مناطق العروض الوسطى التي تتميز بامتداد كبير من الشرق إلى الغرب، مثل الولايات المتحدة والاتحاد السوفييتي سابقاً. وتلجأ عدة خرائط إلى دمج عدد من القطاعات من مساقط مخروطية مختلفة في لوحة واحدة للحد من تشوهات سطح الكرة عند تمثيلها على لوحات مستوية.
المسقط السَّمْتي (المستوي). هو إسقاط الكرة على سطح مستوٍ. ولرؤية إسقاط مستوٍ، يمكن تصور قطعة من الورق تلامس كرة مضاءة عند نقطة واحدة. فتظهر خطوط الكرة على قطعة الورق، وفي هذه الحالة، تكون نقطة تماس قطعة الورق على الكرة خالية من أي تشوه. وبهذا يستطيع الخرائطي رسم المساقط المستوية لتلك القطاعات المستوية نظرياً من خلال الكرة. كما أن الخطوط والدوائر الموجودة عند تقاطع الورقة المستوية مع الكرة خالية من أي تشوه.
وغالباً ما تُستخدم المساقط السمتية (المستوية) لرسم المناطق المندمجة من سطح الأرض كما هو الحال في المناطق القطبية. ويوجد من المساقط المستوية نوع يدعى بالمسقط المزولي. ويعبِّر هذا المسقط عن أقصر مسافة بين أية نقطتين على الأرض وكأنها خط مستقيم. وتُعرف هذه المسافة بمسار الدائرة العظمى. وللمساقط المركزية أهمية خاصة في الملاحة الجوية.
المساقط الأخرى. هناك العديد من المساقط المهمة لا تقوم على أسس المساقط السابقة: المخروطي والأسطواني والسمتي، مثال ذلك المساقط البيضية، وهذه المساقط المسماة بالمساقط البيضية للمساحات المتساوية تتميز بقلة التشوهات على طول خط الاستواء، وعلى طول مناطق العروض الوسطى، وعلى طول خطوط الطول، التي تمر من خلالها. ويمكن للخرائطي أن ينجز عمله بأقل التشوهات عندما يقوم بتقسيم الشكل البيضي إلى عدة شرائح قوسية الشكل.
كيفية عمل الخرائط
يقوم المتخصصون من مختلف التخصصات بجمع المعلومات الخاصة التي يحتاجها الخرائطي. ويقوم الخرائطي بتحويل هذه المعلومات إلى شكل مقروء ومفهوم. وبشكل عام، يتبع الخرائطي الخطوات التالية: 1- الملاحظة والقياس 2- التخطيط والتصميم 3- الرسم وإعادة الإنتاج 4- المراجعة.
الملاحظة والقياس. يحصل معظم المتخصصين على معلوماتهم من ملاحظاتهم للخرائط فخبير الجيوديسيا (المساحة التطبيقية) يقدم القياسات الدقيقة عن شكل الأرض وأبعادها. والمسَّاح ينحصر عمله في تعيين مواقع الأمكنة وحدودها بوساطة قياس المسافات والزوايا والمناسيب. ويستنبط خبير الصور الجوية القياسات من الصور الجوية. ويشارك بعض المتخصصين أيضاً كعدادي الأنفس والجغرافيين والجيولوجيين وراصدي الجو في تقديم المعلومات والبيانات اللازمة.
يعتمد إنتاج خريطة جديدة على الصور الجوية وغيرها من المسوحات الأساسية. وتسمى هذه العملية تأسيس الخريطة. ومعظم الخرائط التي تُرْسم في مرحلة التأسيس هي خرائط طبوغرافية ذات مقياس كبير، وتحتوي على تفصيلات كثيرة. إذ تعتبر هذه الخرائط أساساً لغيرها من الخرائط وفق عملية الرسم التوفيقي. ويشمل الرسم التوفيقي اختيار المعلومات من الخرائط ذات المقياس الكبير ووضعها على الخريطة ذات المقياس الصغير. ويمكن للخرائطي أن يجمع بين معلومات إحصائية وبين معلومات أخرى ممثلة على خريطة جاهزة.
التخطيط والتصميم. يراعي الخرائطي عند التخطيط لأية خريطة عدة اعتبارات، كالغرض منها، ومن الذي سيستخدمها. إذ تساعد هذه الاعتبارات الخرائطي عندما يقرر أي المساقط والمقاييس يجب أن يستخدمها وأي المعلومات التي سيستغني عنها. ويساعد تصميم الخريطة في التأثير على إيصال المعلومات حيث يقوم الخرائطي عند تصميم الخريطة باختيار الرموز والعناوين والرقع والأحرف المناسبة. وفي معظم الحالات، فإن فناني الرسم يمكنهم تقديم المساعدة للخرائطي في هذه المرحلة.
رسم الخريطة وإعادة إنتاجها. يمكن رسم الخرائط بطرق مختلفة، فقد يرسم الخرائطي الخريطة على الورقة أو على فيلم بلاستيكي بصورة مباشرة. وبشكل عام، فإن أكثر الطرق شيوعاً في رسم الخرائط هي التقنية المسماة الحفر، وفي هذه العملية، تُستخدم أدوات خاصة لإزالة الغلاف الملون الذي يغطي قطعة بلاستيكية شفافة. وبعد عملية الإزالة هذه، سوف تظهر الخطوط والمناطق التي تحررت من الغطاء الملون، وهي تناظر الخطوط والمناطق التي ستُطبع بالحبر على الخريطة. فإذا تمت عملية نسخ الخريطة بحذق كاف، فإن الخطوط ستبدو دقيقة ناعمة يصعب الحصول على شبيه لها إذا ما تم رسمها بالطريقة المباشرة.
يتزايد مع مرور الوقت استعمال الخرائطيين للحواسيب. حيث يقوم جهاز يدعى الراسم الآلي موصول بأحد الحواسيب برسم الخريطة، إما بالطريقة المباشرة وإما عن طريق الحفر. ويمكن للحواسيب رسم الخرائط بوساطة أشعة الليزر، وذلك بتعريض الأفلام المصورة لأشعتها. بالإضافة إلى ذلك، فإن الحواسيب تستطيع أن تقوم بعملية مسح شامل لخريطة الأساس والصور الجوية، أو الملامح الطبيعية لسطح الارض، ومن ثم تستخدم البيانات التي حصلت عليها في طبع الخريطة.
غالباً ما يشرف الخرائطي على إعادة إنتاج الخرائط. ولذلك فإن الألوان المناسبة والرموز ستظهر في الأماكن المناسبة على الخريطة النهائية. وتُطبع غالبية الخرائط بوساطة هذه الصفائح البلاستيكية.
هناك بعض الخطوات الإضافية يجب القيام بها عند إنتاج الخرائط ذات الوجه البارز مثل خرائط التضاريس البارزة التي يبرز سطحها لتمثل التلال والجبال. والخرائط الحسية التي تشمل رموزًا حقيقية يستطيع الكفيف قراءتها عن طريق اللمس. وينبغي على الخرائطي، عند إنجاز هذه الخرائط، إنشاء نموذج ثلاثي الأبعاد، إما باستخدام الجبس وإما باستخدام غيره من المواد المماثلة. بعد ذلك، تُطبع رموز الخريطة وأحرفها على قطعة من البلاستيك المستوية. ثم ُتليَّن بالتسخين، وتثبَّت في الحال على النموذج الثلاثي الأبعاد، وتُترك بعد ذلك لتجف.
المراجعة. يجب على الخرائطي مراجعة معلومات الخريطة لإبقائها حديثة. فقد تطرأ تغيُّرات على عدد سكان المدن وشكل الطرق المائية والغابات. وبذلك تحتاج الخرائط إلى إعادة النظر بين الحين والآخر. وتُعدُّ الصور الجوية أهم مصدر لرصد التغيُّرات التي تكون قد طرأت منذ آخر مرة أنشئت فيها الخريطة.
نبذة تاريخية
الخرائط القديمة. تعود أقدم خريطة موجودة الآن إلى بلاد بابل (العراق الآن)، في بلاد ما بين النهرين، منذ عام 2500 قبل الميلاد. وهي مرسومة على قرص طيني، ويُظَنُّ أنها تمثل إحدى المستوطنات الكائنة فوق جبل يشرف على النهر. وللبابليين فضل كبير في رسم الخرائط، فقد طوروا نظاماً لتقسيم الدائرة إلى 360° متساوية. ويُستخدم هذا النظام حالياً في معرفة درجات الطول ودرجات العرض.
وقام المصريون بإنتاج خرائط تعود إلى القرن الرابع عشر قبل الميلاد حيث طوروا تقنية في المساحة الأرضية تمكنهم من إعادة رسم حدود الملكيات الزراعية على ضفاف نهر النيل عقب كل فيضان.
أما الإغريق، فقد حققوا تقدماً هائلاً في مجال الجيوديسيا والمساحة الأرضية، كما طوروا أنظمة تتعلق بمسقط الخريطة. كما شكوا في شكل الأرض وحجمها؛ فاعتقد بعضهم بأنها كروية، وحَسَب أحد علماء الرياضيات، ويدعى إيراتوسثينيز، محيط الأرض بدقة شديدة، وذلك في منتصف القرن الثالث قبل الميلاد تقريباً.
ويُعدّ الفلكي والجغرافي اليوناني كلوديوس بطليموس الخرائطي الأكثر شهرة في العصور القديمة. وقد عمل في الإسكندرية منتصف القرن الثاني الميلادي على وجه التقريب، وأورد في كتابه الجغرافيا كل ما هو معروف آنذاك عن العالم. ويتكون الكتاب من ثمانية أجزاء وخرائط وقائمة تضم قرابة 8,000 مكان، ووضع إزاء كل اسم خط عرضه وخط طوله، كما أورد فيه إرشادات لرسم مختلف المساقط.
الخرائط في العصور الوسطى. حدث تطور علمي ضئيل في صنع الخرائط خلال العصور الوسطى في أوروبا، وتمتد هذه الفترة من القرن الخامس الميلادي إلى أواخر القرن الخامس عشر الميلادي. فقد بدأ الأوروبيون رسم خرائط تدعى خرائط البورتلان، وتتميز هذه الخرائط بدقة متميزة؛ حيث تبين سواحل البحر المتوسط والأقاليم المحاذية بتفصيل كبير. وتساعد الخطوط المستقيمة الموجودة على تلك اللوحات ملاحي السفن في تحديد الاتجاهات.
أما التطور الفعلي لإنتاج الخرائط خلال العصور الوسطى، فقد ظهر في العالم العربي والصين. فقد طور العلماء العرب طرقاً لقياس درجات الطول، ودرجات العرض، بعد قيامهم بترجمة كتاب بطليموس الجغرافيا، إلى اللغة العربية، وذلك في القرن التاسع الميلادي.
علم الخرائط عند العرب. اعتمدت كل كتب الجغرافية العربية أساسًا على خرائط، وكان الكثير من الجغرافيين يبدأون برسم الخريطة، ثم يؤلفون كتابًا في شرحها وتوضيح المعالم عليها. وأوضح دليل على ذلك أن ابن حوقل (القرن الرابع الهجري) سمى كتابه صورة الأرض، أي أن الخريطة هي الأساس، والكتاب شرح وتعليق. وقد وصف سهراب أبو الحسن (ت نحو 330هـ، 946م) كذلك في أول كتابه صورة الأرض كيفية رسم الخرائط، بادئًا بشرح طريقة رسم خطوط الطول والعرض على طريقة بطليموس. وكان الجغرافيون العرب والمسلمون يكتبون الأرقام في خرائطهم ونصوصهم بالحروف لأن أشكال الأرقام العربية لم تكن قد تحددت بعد.
وقد عرف العرب والمسلمون أنواعًا من الخرائط منها الخرائط المسماة بصور الأرض، وهي أصح الخرائط الجغرافية وأعظمها قيمة من الناحية العلمية والعملية. ومنها نوع آخر متأثر بمذاهب اليونان في الربط بين الفلك والجغرافيا ورسم خطوط الطول والعرض بحسب المعلومات الفلكية الوهمية، ومثال ذلك خرائط الخوارزمي وسهراب والبتاني والبيروني. ونوع ثالث تمثله خريطة الإدريسي.
وكانت أهم مدرسة جغرافية خرائطية إسلامية أصيلة هي مدرسة البلدانيين والمسالكيين، وهي ابتكار عربي خالص بدأ على أيدي أوائل الموسوعيين العرب كابن الكلبي (ت204هـ، 820م) في كتاب البلدان الكبير، وكتاب البلدان الصغير، واليعقوبي (ت 266هـ، 879م) صاحب كتاب البلدان، والبلاذري (ت 279هـ، 892م) صاحب كتاب فتوح البلدان والإصطخري (ت نحو سنة 300هـ، 912م) وهو أول من رسم خريطة للعالم الإسلامي على مذهب أهل الرحلة والمشاهدة الشخصية. كما أنه أول خرائطي مسلم رسم خرائط الأقاليم التي تكلّم عنها دون أن يتأثر باليونانيين في مذاهبهم الفلكية، والربط بين خطوط الطول والعرض والمواقع والمواضع. وقد تبع كل المسالكيين العرب الإصطخري في مذهبه هذا، ولهذا سميت خرائطهم وكتبهم بأطلس الإسلام.
وعاصر الإصطخري جغرافي آخر هو البلخي أبو زيد ابن سهل الذي وضع كتابًا سُمي صور الأقاليم حيث رسم خرائط الأقاليم الإسلامية بالألوان. أما الجيهاني، أبو عبد الله بن أحمد بن نصر وهو وزير للسامانيين (302هـ، 914م)، فهو واضع أول خريطة للأرض لم تتأثر بآراء اليونانيين، وإنما قامت على أساس البلدان والمسالك. وتُعد خريطة المسعودي (ت 346هـ، 957م) من أدق الخرائط العربية. كما أن خريطة المقدسي (ت 390هـ، 1000م) تتضمن الحقيقة الكبرى التي اطلع عليها كولمبوس، وكانت أساسًا للكشف الكولومبي الذي غير وجه التاريخ. أما خرائط البيروني (ت 440هـ، 1048م) فتمثل الخرائط التي تجمع بين مذاهب اليونانيين الفلكيين النجوميين ومذاهب العرب المسالكيين البلدانيين.كما أن البتَّاني (ت 317هـ، 929م) صاحب الزيج الصابي صنع خريطة تُعد أول خريطة جامعة مفصلة للعالم بعد خريطة بطليموس. وهي أصح من خريطة بطليموس، لأنه اتّبع في رسمها طريقة التسطيح البسيط، وخطوط الطول والعرض فيها مستقيمة، أما خريطة بطليموس فعُملت على أساس التسطيح المخروطي. وتُعد خريطة الإدريسي (493 - 560هـ، 1100 - 1165م) التي صنعها للأرض بناء على طلب روجر الثاني النورمندي ملك صقلية، عملاً مبتكرًا في فن الخرائط من بدايته إلى يومنا هذا، فهي خريطة للأرض مجسمة رسمها في أول الأمر على الورق، ثم جسمها في صورة كرة من الفضة رسم عليها اليابس بالذهب، وبعد ذلك، سطّحها تسطيحًا بسيطًا يشبه ما جرى عليه مركاتور في عمل مسقط لخريطة الأرض المبسوطة، وعمل كل الحسابات الرياضية التي يتطلبها التحويل من الاستدارة إلى التسطيح. وقد أوضح الإدريسي طريقته في رسم خريطته في مقدمة كتابه نزهة المشتاق في اختراق الآفاق.
أما في الصين، فإن أقدم خريطة مطبوعة موجودة في الموسوعة العلمية الصينية كانت سنة 1155م تقريباً، أي أنها طبعت قبل أن تطبع أول خريطة في أوروبا بثلاثمائة سنة.
تطوُّر علم الخرائط في أوروبا. تبع تطور علم الخرائط في أوروبا عدة تطورات مهمة في القرن الخامس عشر الميلادي. أولاً: ترجمة أعمال بطليموس إلى اللغة اللاتينية، مما ساعد في الكشف عن طرق رسم المساقط، وتعيينه المنظم لمواقع الأمكنة. ثانياً: اختراع الطباعة في منتصف القرن الخامس عشر الميلادي، حيث أصبح إنتاج الخرائط أكثر يسراً. فقد أمكن طباعة عدة نسخ متشابهة، رغم أن هذه العملية تتم يدوياً. ثالثاً: بدأ عهد الكشوفات الجغرافية عند نهاية القرن الخامس عشر الميلادي، وعملت على زيادة المعرفة بالعالم، وازدياد الشغف برسم الخرائط.
وفي نهاية القرن الخامس عشر الميلادي، اقتنع العلماء الأوروبيون بفكرة كروية الأرض. وفي عام 1492م، اكتشف كريستوفر كولمبوس العالم الجديد. وقام تاجر ملاح من ألمانيا يدعى مارتن بهايم بعمل كرة أرضية مدوَّن عليها العالم كما يعرفه الأوروبيون، وذلك قبل رحلة كولمبوس. وبالطبع، فإن الأمريكتين لم تظهرا على هذه الكرة التي مثَّلت المحيط الأطلسي أصغر مما هو عليه فعليًا. وبحلول أوائل القرن الخامس عشر الميلادي، بدأ صانعو الخرائط يضمِّنون خرائطهم العالم الجديد. وقد ظهر اسم أمريكا أول ما ظهر على خريطة صنعها عام 1507م الخرائطي الألماني مارتن فالدسيمولر.
وفي عام 1569م، وضع الجغرافي الفلكي الفلمنكي مركاتور جراردوس أول خريطة بناء على مسقط يحمل اسمه. وكان لهذا المسقط فضل كبير على الملاحة البحرية. وفي عام 1570م، قام الخرائطي الفلمنكي أبراهام أورتيليوس بإنتاج أول أطلس في العالم. وبدأ جين دومنيك كاسيني، وهو فلكي يعمل في مرصد باريس، بتمثيل طبوغرافية فرنسا بتفصيل ودقة في أواخر القرن السابع عشر الميلادي. واستمر هذا العمل لأكثر من مائة عام. وفي إنجلترا، نشر الفلكي إدموند هالي، خريطة للرياح التجارية عام 1686م، وعُدَّت هذه الخريطة أول خريطة في الأرصاد الجوية. وتُعد خريطة هالي عن المجالات المغنطيسية للأرض عام 1700م أول خريطة منشورة استخدمت خطوط التساوي لربط النقاط متساوية القيمة.
انحصر نشاط العلماء في القرون: السادس عشر والسابع عشر والثامن عشر الميلادية في إنتاج الآلات والأدوات الحديثة لتجعل تقنية قياس الأمكنة، ومعرفة مناسيبها أكثر دقة.
صناعة الخرائط في العالم. اكتشف الأوروبيون بلادًا جديدة واستعمروها ما بين القرنين السادس عشر والعشرين، فاحتاجوا بذلك المزيد من الخرائط الحديثة. فقد نشط المسَّاحون الأسبان في مسح أمريكا اللاتينية. وفي عام 1612م، نشر المغامر الإنجليزي الكابتن جون سميث خريطة لساحل فرجينيا في أمريكا الشمالية، وهي أول مستعمرة إنجليزية. كما عمل خريطة لنيوإنجلاند. وفي بداية القرن السابع عشر الميلادي، رسم المكتشف الفرنسي، صمويل دي شامبلين، منطقة واسعة في شمال شرقي أمريكا.
أُنشئت إدارة المساحة عام 1791م، وهي منظمة بريطانية لرسم الخرائط، بإشراف مجلس إدارة المساحة التابع للجيش البريطاني. وقد تحوّلت هذه المنظمة فيما بعد إلى مؤسسة مدنية. لذلك فإن العديد من العاملين فيها قد تدربوا في دوائر الهندسة الملكية التابعة للجيش البريطاني، وقد أرسلت هذه الدائرة حتى الستينيات من القرن العشرين المساحين والمتدربين إلى عدة مستعمرات بريطانية حيث قاموا بإنشاء أقسام الخرائط في مواقع مختلفة، وأدَّوا دوراً كبيراً وحيوياً في فتح وتطوير مناطق جديدة للسكن والزراعة، مثال ذلك ما قام به المساح البريطاني جون أوكسلي، فقد قام بمسح مساحات واسعة من ولاية نيوساوث ويلز في أستراليا وذلك في العقدين: الثاني والثالث من القرن التاسع عشر. أما في الولايات المتحدة، فقد أُنشئت عام 1807م دائرة مساحة الساحل وتعرف الآن بدائرة مساحة المحيط الوطنية، كما تم إنشاء دائرة المساحة الجيولوجية الأمريكية في عام 1879م.
تطور الخرائط الموضوعية. أصبح جمع البيانات المنظَّم شائعاً منذ القرن التاسع عشر الميلادي. فقد قام الخرائطيون بتمثيل هذه البيانات الجديدة، ودراسة مدى صحتها. إذ طوّر الخرائطي البريطاني هنري هارنيس، الخرائط الموضوعية بنشره مجموعة من الخرائط الموضوعية لأيرلندا عام 1837م، وقد استخدمت هذه الخرائط درجة اللون للتعبير عن الكثافة السكانية، والدوائر السوداء المتباينة الحجم في التعبير عن عدد سكان المدن، والخطوط المتباينة السماكة لتمثيل حركة المرور.
وفي عام 1855م، أعد الطبيب الإنجليزي جون سنو، وبصورة دراماتيكية، خريطة موضوعية قيمة لبحث علمي، فقد استخدم في خريطة لضواحي مدينة لندن النقطة لتمثل كل شخص توفي بوباء الكوليرا في تلك السنة. فتجمع عدد كبير من النقط حول مضخة للماء في شارع برود، فساعد ذلك على كشف مصدر هذا الوباء.
التقنية الحديثة وإنتاج الخرائط. ساعد التقدم في الطباعة والتصوير الجوي خلال القرن العشرين، على جعل إنتاج الخرائط، أكثر يسرًا وأقل تكلفة، فأصبحت الخرائط أوسع انتشاراً. ففي بداية القرن العشرين، تطلب التطور في صناعة الطيران إعداد خرائط ملاحية. كما سهلت الطائرات تصوير مناطق واسعة من الجو.
ومنذ منتصف القرن نفسه، تزايد استخدام الحاسوب في رسم الخرائط تزايداً كبيراً، حيث أُعدت المساقط، وضُبطت أجهزة الرسم الآلي التي ترسم أو تطبع الخرائط، كما أنها قد ترسم الخرائط مباشرة، فتبدو في الحال على الشاشات.
وقدم اكتشاف الفضاء مساهمة كبيرة في صنع الخرائط الممثلة لسطح الأرض والقمر وبعض الكواكب وللكون الشاسع. فقد حملت الأقمار الصناعية أجهزة الاستشعار عن بُعْد التي ترسل بدورها الموجات المرتدة من سطح الأرض. ويمكن استعمال هذه الموجات لرسم سطح الأرض، وتحديد مناطق الرواسب المعدنية وأنماط انتشار النباتات الطبيعية، وتحديد أماكن انتشار التلوث البيئي، وغير ذلك من المواضيع.